Answer on Question \#63848-Physics-Other

The 88 keys on a standard piano correspond to strings that have fundamental frequencies ranging from 27.5 Hz (known by musicians as A0) up to 4186 Hz . Assume a piano is strung only using strings that are each under a tension of 710 N and have a linear density of $0.00647 \mathrm{~kg} / \mathrm{m}$. How long will the longest and shortest strings be?

Solution

The fundamental frequency of string is

$$
f=\frac{v}{2 L} .
$$

Since the wave velocity is given by

$$
v=\sqrt{\frac{T}{\mu}}
$$

the length of string is

$$
\begin{gathered}
L=\frac{1}{2 f} \sqrt{\frac{T}{\mu}} \\
L_{1}=\frac{1}{2 f_{1}} \sqrt{\frac{T}{\mu}}=\frac{1}{2(27.5)} \sqrt{\frac{710}{0.00647}}=6.02 \mathrm{~m} . \\
L_{1}=\frac{1}{2 f_{1}} \sqrt{\frac{T}{\mu}}=\frac{1}{2(4186)} \sqrt{\frac{710}{0.00647}}=0.0396 \mathrm{~m} .
\end{gathered}
$$

https://www.AssignmentExpert.com

