Answer on Question \#63726, Physics / Optics

Question:

In a biprism expt., the distance of 20th bright band from centre of interference pattern is 8 mm . Calculate distance of 30 th bright band from centre.

Solution:

Here is the scheme for this experiment:

The source of light C is a narrow slit. The angle α is very small and the interference occurs from two imaginary sources, C^{\prime} and $C^{\prime \prime}$.

Let h be the distance between imaginary sources, L - the distance from the slit to the screen, X - the distance of the $\mathrm{n}^{\text {th }}$ bright band from the centre, and λ - wavelength of the light.

These parameters connected by this relation:

For $20^{\text {th }}$ bright band - For $30^{\text {th }}$ bright band - .

We may express unknown parameters this way: - - , and insert it into second formula:

$$
m m
$$

Answer:

