Answer on Question \#63557, Physics / Mechanics | Relativity

A cylinder of mass M and radius r rolls down a ramp at height of $2 m$ above the ground and eventually takes off the ramp 20 cm above the ground at an angle of 40degrees from the x-axis. Assuming the cylinder didn't slipped as it rolls down, calculate the horizantal range at which the cylinder landed on the ground.

Solution:

Find the speed with which a cylinder rolling on ramp

$$
\begin{gathered}
m g h=\frac{m v^{2}}{2}+\frac{J \omega^{2}}{2} \\
J=\frac{2}{5} m R^{2} \\
\omega=\frac{v}{R} \\
m g h=\frac{m v^{2}}{2}+\frac{v^{2}}{2 R^{2}} \cdot \frac{2 m R^{2}}{5} \\
m g h=\frac{7}{10} m v^{2} \\
v=\sqrt{\frac{10 \cdot 9.8 \cdot 2}{7}}=5.3 \mathrm{~m} / \mathrm{s} \\
v_{\mathrm{x}} \\
\mathrm{v}_{\mathrm{x}}
\end{gathered} \mathrm{v}_{\mathrm{y}} .
$$

$$
\begin{gathered}
v_{x}=v \cos 40^{\circ}=5.3 \cdot 0.77=4.1 \mathrm{~m} / \mathrm{s} \\
v_{y}=v \sin 40^{\circ} 5.3 \cdot 0.64=3.4 \mathrm{~m} / \mathrm{s} \\
\Delta y=v_{y} t+\frac{1}{2} g t^{2} \\
0.2=3.4 t+4.9 t^{2} \\
4.9 t^{2}+3.4 t-0.2=0 \\
t=0.055 \mathrm{~s} \\
\Delta x=v_{x} t
\end{gathered}
$$

Where $\Delta x=R, ~ \Delta x=4.1 \cdot 0.055=0.23 m$
Answer: 0.23 m

