Let vectors \vec{w}, \vec{v} and \vec{u} represent velocities of wind, airplane with respect to air and airplane with respect to the ground respectively. Airplane's velocity is the resultant of sum of vectors \vec{v} and \vec{w}. So, we have $\vec{u}=\vec{v}+\vec{w}$. As the wind is blowing from the west and airplane needs to fly northward, we get a right triangle with hypotenuse \vec{v} (see the diagram below).

\vec{w}

Using the Pythagorean theorem, we get the equation for the speed of airplane with respect to the ground:

$$
|\vec{u}|=\sqrt{|\vec{v}|^{2}-|\vec{w}|^{2}}=\sqrt{600^{2}-120^{2}}=\sqrt{345600} \approx 588 \mathrm{~km} / \mathrm{h}
$$

The direction is determined by angle α. It can be found from:
$\cos \alpha=\frac{|\vec{w}|}{|\overrightarrow{|v|}|}=\frac{120}{600}=0.2$.
$\alpha=\operatorname{acos} 0.2 \approx 78.5^{\circ}$.
So, the plane must fly 78.5 degrees from west to north.

