Let vectors  $\vec{w}$ ,  $\vec{v}$  and  $\vec{u}$  represent velocities of wind, airplane with respect to air and airplane with respect to the ground respectively. Airplane's velocity is the resultant of sum of vectors  $\vec{v}$  and  $\vec{w}$ . So, we have  $\vec{u} = \vec{v} + \vec{w}$ . As the wind is blowing from the west and airplane needs to fly northward, we get a right triangle with hypotenuse  $\vec{v}$  (see the diagram below).



Using the Pythagorean theorem, we get the equation for the speed of airplane with respect to the ground:

$$|\vec{u}| = \sqrt{|\vec{v}|^2 - |\vec{w}|^2} = \sqrt{600^2 - 120^2} = \sqrt{345600} \approx 588 \ km/h$$

The direction is determined by angle  $\alpha$ . It can be found from:

$$\cos \alpha = \frac{|\vec{w}|}{|\vec{v}|} = \frac{120}{600} = 0.2$$

 $\alpha = a\cos 0.2 \approx 78.5^{\circ}$ .

So, the plane must fly 78.5 degrees from west to north.