Answer on Question \#63514, Physics / Mechanics | Relativity

Question:

Susan's 11.0 kg baby brother Paul sits on a mat. Susan pulls the mat across the floor using a rope that is angled 30° above the floor. The tension is a constant 30.0 N and the coefficient of friction is 0.180 .

Use work and energy to find Paul's speed after being pulled 3.10 m .

Solution:

Let us assume that the weight of the mat is negligibly small. To use work and energy we must consider horizontal components of forces acting on Paul.
$F_{T}^{x}=F_{T} \cdot \cos \alpha$
$F_{F}^{\chi}=k F_{N}=k m g$, where k is the coefficient of friction, m is the mass of Paul and g is the gravitational acceleration.

The resultant force $F_{\text {res }}=F_{T} \cdot \cos \alpha-k m g$
The work of this force $W=\left(F_{T} \cdot \cos \alpha-k m g\right) \cdot s$
Kinetic energy at the point P_{1} is calculated as $E_{k}=\frac{m v^{2}}{2}$, and according to the law of conservation of energy $W=E_{k}$ or $\left(F_{T} \cdot \cos \alpha-k m g\right) \cdot s=\frac{m v^{2}}{2}$.

Then the speed $v=\sqrt{\frac{2 s \cdot\left(F_{T} \cdot \cos \alpha-k m g\right)}{m}}$.
$v=\sqrt{\frac{2 \cdot 3 \cdot 1 \cdot\left(30.0 \cdot \cos 30^{\circ}-0.18 \cdot 11.0 \cdot 9.81\right)}{11.0}}=1.9 \mathrm{~m} / \mathrm{s}$

Answer:

$1.9 \mathrm{~m} / \mathrm{s}$

