Answer on Question\#63513 - Physics - Molecular Physics

A kettle contains 1.2 kg of water and is supplied with energy at a rate of 2 kw from the mains. Assuming the kettle is 80% effecient, how long would it take to heat the water from $20^{\circ} \mathrm{C}$ to the boiling point of $100^{\circ} \mathrm{C}$ if no energy is dissapated from the water to the environment?
Solution. The amount of heat required to heat water from temperature $20^{\circ} \mathrm{C}$ to 100° without phase change can be calculated using the formula

$$
Q_{1}=C m\left(t_{2}-t_{1}\right)
$$

where
$C=4184 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$ - specific heat capacity for water
$m=1.2 \mathrm{~kg}$ - mass water
$t_{1}=20^{\circ} \mathrm{C}$ and $t_{2}=100^{\circ}$ - the initial and final temperature, respectively.
On the other hand, the amount of heat transferred to the water, taking the efficiency of kettle can be calculated using the formula

$$
Q_{2}=\eta P t
$$

where
$\eta=0.8(80 \%)$ - efficiency
$P=2000 \mathrm{~W}$ - power of kettle
t-time
Because no energy is dissapated from the water to the environment get $Q_{1}=Q_{2}$.
Hence $C m\left(t_{2}-t_{1}\right)=\eta P t t=\frac{C m\left(t_{2}-t_{1}\right)}{\eta P}=\frac{4184 \cdot 1 \cdot 2(100-20)}{0.8 \cdot 2000}=251 \mathrm{~s}$. (4 minutes 11 seconds).
Answer. 251s (4 minutes 11 seconds)

