Answer on Question \#63484, Physics / Mechanics | Relativity

A 1900 kg car moves along a horizontal road at speed $\mathrm{v}_{0}=11.3 \mathrm{~m} / \mathrm{s}$. The road is wet, so the static friction coefficient between the tires and the road is only $\mu_{s}=0.15$ and the kinetic friction coefficient is even lower, $\mu_{k}=0.105$. The acceleration of gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. What is the shortest possible stopping distance for the car under such conditions? Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ and neglect the reaction time of the driver. Answer in units of m

Solution:

Stopping is shortest when the wheels don't slide, so we will use $\mu_{s}=0.15$.
Second Newton's law for the car:

$$
F_{f r}=m a_{\max }
$$

Formula for the friction force:

$$
F_{f r}=\mu_{\mathrm{s}} N=\mu_{\mathrm{s}} m g
$$

Hence, the highest possible deceleration of the car is

$$
a_{\max }=\mu_{\mathrm{s}} g=0.15 \cdot\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=1.47 \mathrm{~m} / \mathrm{s}^{2}
$$

The shortest possible stopping distance for the car under such conditions is

$$
d=\frac{v_{0}^{2}}{2 a_{\max }}=\frac{11.3^{2}}{2 \cdot 1.47}=43.43 \mathrm{~m}
$$

Answer: 43.43 m

