Answer on Question \#63389, Physics / Mechanics | Relativity

Question:

A satellite moves in a circular orbit around a planet at a speed of $4400 \mathrm{~m} / \mathrm{s}$. What is the orbital period?

Solution:

Let M is the mass of a planet, m - the mass of a satellite, r - the radius of satellite's orbit and v - circular speed of the satellite. According to Newton's equation $F_{g r}=G \frac{M m}{r^{2}}$, where the gravitational constant $G \cong 6.67 \cdot 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}$.

This force is equal to centrifugal force $F_{c f}=\frac{m v^{2}}{r}$, because the satellite's orbit is circular.
$G \frac{M m}{r^{2}}=\frac{m v^{2}}{r}$ and we may calculate $r=\frac{G M}{v^{2}}$.
Orbital period:
$T=\frac{2 \pi r}{v}=\frac{2 \pi G M}{v^{3}} \cong \frac{2 \pi \cdot 6.67 \cdot 10^{-11}}{4400^{3}} \cdot M=4.92 \cdot 10^{-21} \cdot M$ sec, if the planet's mass is in kg.

Answer:

$$
T=4.92 \cdot 10^{-21} \cdot M \text { sec, if } M \text { is measured in } \mathrm{kg} .
$$

