Answer on Question \#63309, Physics / Mechanics | Relativity
A box of mass 41.9 kg is moving across a level floor at a speed of $3.53 \mathrm{~m} / \mathrm{sec}$. A kinetic friction force of 104.4 N is acting on the box directed against its motion. How far must the box move for the force of friction to bring it to rest? Select one:
a. 4.07 m
b. 2.13 m
c. 17.3 m
d. 2.50 m
e. 3.31 m

Find: s - ?

Given:

$\mathrm{m}=41.9 \mathrm{~kg}$
$\mathrm{v}_{0}=3.53 \mathrm{~m} / \mathrm{s}$
$F_{\text {frict }}=104.4 \mathrm{~N}$
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Solution:

Movement is delayed.
Distance:
$2 \mathrm{as}=\mathrm{v}^{2}-\mathrm{v}_{0}^{2}(1)$,
where $v=0 \mathrm{~m} / \mathrm{s}$
Of (1) $\Rightarrow 2 \mathrm{as}=\mathrm{v}_{0}^{2}(2)$
Of (2) $\Rightarrow \mathrm{s}=\frac{\mathrm{v}_{0}^{2}}{2 \mathrm{a}}(3)$
The body moves only under the influence of friction force (along OX):
$\mathrm{F}_{\text {frict }}=\mathrm{ma}(4)$
Friction force:
$\mathrm{F}_{\text {frict }}=\mu \mathrm{mg}(5)$,
where μ is coefficient of friction
Of (5) $\Rightarrow \mu=\frac{\mathrm{F}_{\text {frict }}}{\mathrm{mg}}(6)$
Of (6) $\Rightarrow \mu=0.2543$
(5) in (4): $\mu \mathrm{mg}=\operatorname{ma}(7)$

Of (7) $\Rightarrow \mathrm{a}=\mu \mathrm{g}$ (8)
Of (8) $\Rightarrow a=2.4922 \mathrm{~m} / \mathrm{s}^{2}$
Of (3) $\Rightarrow s=2.5 \mathrm{~m}$

Answer:

d. 2.50 m

