Answer on Question \#63308, Physics / Mechanics | Relativity

A hiker throws a stone directly downward from a cliff with a speed of $10.0 \mathrm{~m} / \mathrm{sec}$. The stone travels 35.4 meters downward before hitting a rotten log. What is the speed of the stone just as it reaches the \log ? Assume there is negligible friction or drag force.

Select one:
a. $28.2 \mathrm{~m} / \mathrm{sec}$
b. $29.9 \mathrm{~m} / \mathrm{sec}$
c. $24.4 \mathrm{~m} / \mathrm{sec}$
d. $26.3 \mathrm{~m} / \mathrm{sec}$
e. $33.3 \mathrm{~m} / \mathrm{sec}$

Solution:

Given:

$$
\begin{aligned}
& y_{0}=h=35.4 \mathrm{~m} \\
& v_{0 x}=10.0 \mathrm{~m} / \mathrm{s} \\
& v_{0 y}=0 \mathrm{~m} / \mathrm{s} \\
& v=?
\end{aligned}
$$

The horizontal component of the velocity of the object remains unchanged throughout the motion. The vertical component of the velocity increases linearly, because the acceleration due to gravity is constant ($g=9.80 \mathrm{~m} / \mathrm{s}^{2}$).

The kinematic equation that describes an object's motion in vertical direction is:

$$
v_{y}^{2}=v_{o y}^{2}+2 g h
$$

Thus,

$$
v_{y}=\sqrt{2 g h}=\sqrt{2 \cdot 9.80 \cdot 35.4}=26.34 \mathrm{~m} / \mathrm{s}
$$

The horizontal component of velocity is $10.0 \mathrm{~m} / \mathrm{s}$ and the vertical component of velocity is 26.34 m / s.

The final speed is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Thus,

$$
v=\sqrt{10^{2}+26.34^{2}}=28.2 \mathrm{~m} / \mathrm{s}
$$

Answer: a. $\mathbf{2 8 . 2} \mathbf{~ m} / \mathrm{sec}$
https://www.AssignmentExpert.com

