Answer on Question 63297, Physics, Mechanics, Relativity

Question:

A softball is tossed into the air at an angle of 56.9 degrees with the vertical (that would be 33.1 degrees with the horizontal). The initial velocity is $19.5 \mathrm{~m} / \mathrm{s}$. What is the maximum height of the softball?

Solution:

Let's take the upwards as the positive direction. Then, we can find the maximum height of the softball from the kinematic equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a h_{\max },
$$

here, v_{f} is the final velocity of the softball at the maximum height, v_{i} is the initial velocity of the softball, $a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of gravity, $h_{\max }$ is the maximum height.

Let's write the kinematic equation in projection on the axis y :

$$
v_{f y}^{2}=v_{i y}^{2}-2 g h_{\max } .
$$

At the maximum height $v_{f y}=0 \mathrm{~m} / \mathrm{s}$, so we get:

$$
h_{\max }=\frac{-v_{i y}^{2}}{-2 g}=\frac{v_{i y}^{2}}{2 g} .
$$

The projection of the initial velocity of the softball on the axis y can be found as follows:

$$
v_{i y}=v_{i} \cos \theta,
$$

here, $\theta=56.9^{\circ}$ is the angle with the vertical.
Substituting $v_{i y}$ into the equation for the maximum height we get:

$$
h_{\max }=\frac{\left(v_{i} \cos \theta\right)^{2}}{2 g} .
$$

Finally, we can calculate the maximum height of the softball:

$$
h_{\max }=\frac{\left(v_{i} \cos \theta\right)^{2}}{2 g}=\frac{\left(19.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos 56.9^{\circ}\right)^{2}}{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=5.78 \mathrm{~m}
$$

Answer:

$h_{\max }=5.78 \mathrm{~m}$.
https://www.AssignmentExpert.com

