Answer on Question \#63211, Physics / Other

Two automobiles of equal mass approach an intersection. One vehicle is traveling with velocity $14.0 \mathrm{~m} / \mathrm{s}$ toward the east and the other is traveling north with speed $\mathrm{v}_{2 i}$. Neither driver sees the other. The vehicles collide in the intersection and stick together, leaving parallel skid marks at an angle of 57.5° north of east. What was the initial speed of the northward-moving vehicle?

Solution:

Let the final speed be V_{f}.
By conservation of momentum:
northwards,

$$
2 m V_{f} \sin \left(57.5^{\circ}\right)=m v_{2 i} ;
$$

eastwards,

$$
2 m V_{f} \cos \left(57.5^{\circ}\right)=m \cdot 14.0 ;
$$

thus, dividing the terms on either side of these two equations into one another, we find

$$
\tan 57.5^{\circ}=\frac{v_{2 i}}{14.0}
$$

Thus,

$$
v_{2 i}=14.0 \cdot \tan 57.5^{\circ}=21.98 \mathrm{~m} / \mathrm{s} \approx 22.0 \mathrm{~m} / \mathrm{s}
$$

Answer: 22.0 m/s

