## Answer on Question \#63173, Physics / Other

A vehicle moving with a uniform acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ has a velocity of $4 \mathrm{~m} / \mathrm{s}$ at a certain time. What will it's velocity be ...

## Solution:

The acceleration is

$$
a=\frac{v_{f}-v_{i}}{t}
$$

The symbol $a$ stands for the acceleration of the object. And the symbol v stands for the velocity of the object; a subscript of $i$ after the $v$ indicates that the velocity value is the initial velocity value and a subscript of $f$ indicates that the velocity value is the final velocity value. The $t$ is the time.

Thus,

$$
v_{f}=v_{i}+a t
$$

After one second the velocity will be

$$
v_{1}=4+2 \cdot 1=6 \mathrm{~m} / \mathrm{s}
$$

After two seconds the velocity will be

$$
v_{1}=4+2 \cdot 2=8 \mathrm{~m} / \mathrm{s}
$$

and so on.

Answer: After one second the velocity will be $\mathbf{6 m} / \mathbf{s}$.
https://www.AssignmentExpert.com

