Answer on Question 63162, Physics, Other

Question:

A child's vertical takeoff velocity when jumping on a trampoline is $5.3 \mathrm{~m} / \mathrm{s}$. Assuming takeoff and landing heights are the same, how long is the child airborne?

Solution:

Let's take the upwards as the positive direction. Then, we can find the time that the child needs to reach the maximum height from the kinematic equation:

$$
v_{f}=v_{i}+g t,
$$

here, v_{f} is the final velocity of the child, v_{i} is the initial velocity of the child, t is the time that the child needs to reach the maximum height, $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity.

Since $v_{f}=0 \mathrm{~m} / \mathrm{s}$ at the maximum height, we get:

$$
\begin{gathered}
0=v_{i}-g t \\
t=\frac{-v_{i}}{-g}=\frac{-5.3 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=0.54 \mathrm{~s} .
\end{gathered}
$$

Because takeoff and landing heights are the same, the total time that the child spend in the air will be:

$$
t_{\text {total }}=2 t=2 \cdot 0.54 \mathrm{~s}=1.08 \mathrm{~s}
$$

Answer:

$t_{\text {total }}=1.08 \mathrm{~s}$.

