Answer on Question \#63106-Physics-Electromagnetism

Find the potential at $r 1=40 \mathrm{~cm}$ and $\mathrm{r} 2=10 \mathrm{~cm}$ from a charge $\mathrm{Q}=2 \times 10^{\wedge}-4$ and also the potential difference between these two points.

Solution

The potential at distance r is

$$
\begin{gathered}
V(r)=k \frac{Q}{r} \\
V_{1}=k \frac{Q}{r_{1}}=\left(9 \cdot 10^{9}\right) \frac{\left(2 \cdot 10^{-4}\right)}{0.4}=4.5 \cdot 10^{6} \mathrm{~V} \\
V_{2}=k \frac{Q}{r_{2}}=\left(9 \cdot 10^{9}\right) \frac{\left(2 \cdot 10^{-4}\right)}{0.1}=18 \cdot 10^{6} \mathrm{~V}
\end{gathered}
$$

The potential difference between these two points is

$$
V_{2}-V_{1}=18 \cdot 10^{6}-4.5 \cdot 10^{6}=13.5 \cdot 10^{6} V
$$

