Answer on Question \#62832, Physics / Electromagnetism

A series circuit consisting of an unchanged $42 \mu \mathrm{~F}$ capacitor and 10 M ohms resistor is connected to 100 V power source. What are the current in the circuit and the charge on the capacitor after one time constant?

Solution:

Charge the capacitor

$$
\begin{gathered}
q=C \epsilon\left(1-e^{-\frac{t}{\tau}}\right)=C \epsilon\left(1-e^{-1}\right) \\
q=42 \cdot 10^{-6} \cdot 1 \cdot\left(1-e^{-1}\right)=15.6 \mu C
\end{gathered}
$$

The current in the circuit

$$
\begin{gathered}
I=\frac{U}{R}\left(e^{-\frac{t}{\tau}}\right)=\frac{U}{R}\left(e^{-1}\right) \\
I=\frac{100}{10^{7}}\left(e^{-1}\right)=0.37 \mu A
\end{gathered}
$$

Answer: $0.37 \mu \mathrm{~A}$ and $15.6 \mu \mathrm{C}$

