Question \#62662-Physics - Atomic and Nuclear Physics

Calculate how thick an absorber needs to be absorbed half of the incoming light.

Solution.

Attenuation coefficient of the volume of a material characterizes how easily it can be penetrated by a beam of light. A large attenuation coefficient means that the beam is quickly "attenuated" (weakened) as it passes through the medium, and a small attenuation coefficient means that the medium is relatively transparent to the beam. The SI unit of attenuation coefficient is the reciprocal metre ($m-1$). It is defined as

$$
\mu=-\frac{1}{\Phi} \frac{d \Phi}{d z}
$$

where Φ is the radiant flux, z is the path length of the beam. This differential equation gives a solution:

$$
\Phi=\Phi_{0} \mathrm{e}^{-\mu \mathrm{z}}
$$

If a half of incoming light was absorbed, then

$$
\Phi=\frac{1}{2} \Phi_{0} \rightarrow \frac{1}{2} \Phi_{0}=\Phi_{0} \mathrm{e}^{-\mu \mathrm{z}} \Rightarrow \frac{1}{2}=\mathrm{e}^{-\mu \mathrm{z}} \Rightarrow \mu \mathrm{z}=\ln 2 \Rightarrow z=\frac{\ln 2}{\mu}
$$

Answer: if absorber has an attenuation coefficient equals μ, its thickness for absorbing half of the incoming light should be $z=\frac{\ln 2}{\mu}$.

