Answer on Question \#62647-Physics-Classical Mechanics

A bullet is fired through a board 11.7 cm thick, with a line of motion perpendicular to the face of the board. If the bullet enters with a speed of $381 \mathrm{~m} / \mathrm{s}$ and emerges with a speed of $211 \mathrm{~m} / \mathrm{s}$, what is its acceleration as it passes through the board?

Solution

We use the kinematic formula:

$$
v_{f}^{2}-v_{i}^{2}=-2 a S
$$

a is the magnitude of acceleration of bullet.

$$
a=\frac{v_{i}^{2}-v_{f}^{2}}{2 S}=\frac{381^{2}-211^{2}}{2 \cdot 0.117}=4.30 \cdot 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The acceleration is negative (the final velocity of bullet is less than initial).
Answer: $4.30 \cdot 10^{5} \frac{m}{s^{2}}$.

