Answer on Question \#62616, Physics / Mechanics

A bus moving with constant acceleration covers the distance between two stops 82 m apart in 6.3 sec . It's speed as it passes the second stop is $15.4 \mathrm{~m} / \mathrm{sec}$.
A. What is its speed as it passes by the first stop?
B. What is its acceleration?
C. How much farther will it go if it travels 1.6 sec. more?

Solution:

(a)

Let the initial velocity of the bus at first stop is $\mathrm{v}_{1} \mathrm{~m} / \mathrm{s}$
The kinematic equation is

$$
d=\frac{v_{1}+v_{2}}{2} t
$$

The symbol d stands for the displacement of the object. The symbol t stands for the time for which the object moved.

$$
v_{1}=\frac{2 d-v_{2} t}{t}
$$

where $v_{2}=15.4 \mathrm{~m} / \mathrm{s}$.

$$
v_{1}=\frac{2 \cdot 82-15.4 \cdot 6.3}{6.3}=10.63 \mathrm{~m} / \mathrm{s}
$$

(b)

The kinematic equation for acceleration is

$$
a=\frac{v_{2}-v_{1}}{t}=\frac{15.4-10.63}{6.3}=0.757 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \approx 0.76 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) The kinematic equation is

$$
d_{2}=v_{2} t_{2}+\frac{a t_{2}^{2}}{2}
$$

Thus,

$$
d_{2}=15.4 \cdot 1.6+0.757 \cdot \frac{1.6^{2}}{2}=25.6 \mathrm{~m}
$$

Answer: A. $10.63 \mathrm{~m} / \mathrm{s}$;
B. $0.76 \mathrm{~m} / \mathrm{s}^{2}$;
C. 25.6 m

