Answer on Question \#62531, Physics / Mechanics | Relativity

How fast would rain drops hit the ground after falling from a cloud 1 kilometer above the Earth's surface

Solution:

Without air resistance, everything falls at the same acceleration, $9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. That is, every second, it goes 9.81 meters per second faster.

The speed is

$$
v=\sqrt{2 g h}
$$

Free fall is independent of the mass of the body. It only depends on height and time period for which body is thrown.

$$
v=\sqrt{2 \cdot\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \cdot(1000 \mathrm{~m})}=140 \mathrm{~m} / \mathrm{s}
$$

Free Fall Formula is

$$
y=y_{0}-\frac{1}{2} g t^{2}
$$

where $y=0, y_{0}=1000 \mathrm{~m}$ and $g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$ is acceleration.
Thus, time of fall of the drop is

$$
t=\sqrt{\frac{2\left(y_{0}-y\right)}{g}}=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \cdot 1000}{9.81}} \approx 14.3 \mathrm{~s}
$$

Answer: 140 m/s; 14.3 s

