Answer on Question \#62487-Physics-Other

A water hose is used to fill a large cylindrical storage tank of diameter D and height 20 . The hose shoots the water at 45° above the horizontal from the same level as the base of the tank and is a distance 6 D away. For what range of launch speeds (vo) will the water enter to the tank? Ignore air resistance, and express your answer in terms of D and g

Solution

Let the nozzle of the hose be at the origin. Then the nearest part of the rim of the tank is at $(x, y)=$ $(6 D, 2 D)$ and the furthest part of the rim is at $(x, y)=(7 D, 2 D)$.

The trajectory of the water can be found as follows:
$x(t)=\frac{\sqrt{2}}{2} v_{0} t\left(\cos (45)=\frac{\sqrt{2}}{2}\right)$
$y(t)=\frac{\sqrt{2}}{2} v^{0} t-\frac{1}{2} g t^{2} .\left(\sin (45)=\frac{\sqrt{2}}{2}\right)$
Substituting the first ($t=\frac{\sqrt{2} x}{v_{0}}$) into the second gives the trajectory:

$$
y=x-\left(\frac{g}{v_{0}^{2}}\right) x^{2}
$$

Now we want y to be equal to 2D when x is between 6D and 7D, but also that we are on the downward path of the parabola there.

Now
$x-\left(\frac{g}{v_{0}^{2}}\right) x^{2}=2 D$ can be rewritten as

$$
\left(\frac{g}{v_{0}^{2}}\right) x^{2}-x+2 D=0
$$

with solutions:

$$
x=\frac{v_{0}^{2}}{2 g} \pm \frac{v_{0}^{2}}{2 g} \sqrt{\left(1-\frac{8 g D}{v_{0}^{2}}\right)}
$$

But only the largest solution corresponds to the downward part of the parabola.
So we know that

$$
6 D<\frac{v_{0}^{2}}{2 g}+\frac{v_{0}^{2}}{2 g} \sqrt{\left(1-\frac{8 g D}{v_{0}^{2}}\right)}<7 D
$$

Solving

$$
\begin{gathered}
12 g D-v_{0}^{2}<v_{0}^{2} \sqrt{\left(1-\frac{8 g D}{v_{0}^{2}}\right)}<14 g D-v_{0}^{2} \\
\left.\left(12 g D-v_{0}^{2}\right)^{2}<v_{0}^{4}-8 g D \sqrt{\left(1-\frac{8 g D}{v_{0}^{2}}\right)}<14 g D-v_{0}^{2}\right)^{2}
\end{gathered}
$$

Left inequality:

$$
\begin{gathered}
v_{0}{ }^{4}-24 g D v_{0}^{2}+(12 g D)^{2}<v_{0}^{4}-8 g D v_{0}^{2} \\
-16 g D v_{0}^{2}<-144 g^{2} D^{2} \\
v_{0}>\sqrt{(9 g D)}
\end{gathered}
$$

Right inequality:

$$
\begin{gathered}
v_{0}^{4}-8 g D v_{0}^{2}<v_{0}^{4}+(14 g D)^{2}-28 g D v_{0}^{2} \\
20 g D v_{0}^{2}<196 g^{2} D^{2} \\
v_{0}<\sqrt{\frac{49}{5} g D}
\end{gathered}
$$

So the answer is:

$$
\sqrt{9 g D}<v_{0}<\sqrt{\frac{49}{5} g D}
$$

