Answer on Question 62486, Physics, Other

Question:

An electron in a cathode-ray-tube accelerates from $10800 \mathrm{~m} / \mathrm{s}$ to $4.8 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$ over 2.23 cm .
a) How long does the electron take to travel this distance?
b) What is its acceleration?

Solution:

a) We can find the time that the electron take to travel this distance from the kinematic equation:

$$
d=\frac{v_{i}+v_{f}}{2} t
$$

here, d is the distance, v_{i} is the initial velocity of the electron, v_{f} is the final velocity of the electron, t is the time.

Then, from this formula we can calculate the time:

$$
t=\frac{2 d}{v_{i}+v_{f}}=\frac{2 \cdot 0.0223 \mathrm{~m}}{10.8 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}+4.8 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}}=9.27 \cdot 10^{-9} \mathrm{~s} .
$$

b) We can find the acceleration of the electron from another kinematic equation:

$$
\begin{gathered}
v_{f}=v_{i}+a t, \\
a=\frac{v_{f}-v_{i}}{t}=\frac{4.8 \cdot 10^{6} \frac{\mathrm{~m}}{\mathrm{~s}}-10.8 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}}{9.27 \cdot 10^{-9} \mathrm{~s}}=5.17 \cdot 10^{14} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
\end{gathered}
$$

Answer:

a) $t=9.27 \cdot 10^{-9} \mathrm{~s}$.
b) $a=5.17 \cdot 10^{14} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

