Answer on Question \#62484-Physics - Astronomy | Astrophysics

Question:

Assume that the disk of the Milky Way has a radius of 20 kpc (20 thousand parsecs). It contains 100 billion stars, each with a radius similar to the Sun's, $6.96 \times 10^{10} \mathrm{~cm}$. What fraction of the galaxy's disk is covered by stars?

Solution:

First, let's express the Milky Way disk's area as $S_{M W}=\pi R_{M W}{ }^{2}$.
Now, we express the disk's area for one star $-S_{\text {star }}=\pi R_{\text {star }}{ }^{2}$.
Let N is the total quantity of stars. Then we can calculate the fraction (F) of the galaxy's disk covered by stars like this:
$F=\frac{N S_{\text {star }}}{S_{M W}}=\frac{N \pi R_{\text {star }}{ }^{2}}{\pi R_{M W}{ }^{2}}=N\left(\frac{R_{\text {star }}}{R_{M W}}\right)^{2}$.
$N=100 \cdot 10^{9}=10^{11}$
$R_{\text {star }}=6.96 \cdot 10^{10} \mathrm{~cm}=6.96 \cdot 10^{8} \mathrm{~m}$
$R_{M W}=20 \mathrm{kpc}=20000 \cdot 3,0857 \cdot 10^{16} \mathrm{~m}=6.1714 \cdot 10^{20} \mathrm{~m}$
$F=10^{11} \cdot\left(\frac{6.96 \cdot 10^{8}}{6.1714 \cdot 10^{20}}\right)^{2}=10^{11} \cdot\left(1.13 \cdot 10^{-12}\right)^{2}=10^{11} \cdot 1.28 \cdot 10^{-24}=1.28 \cdot 10^{-13}$.

Answer:

