Answer on Question 62464, Physics, Solid State Physics

Question:

A window washer drops a brush from a scaffold on a tall office building. What is the speed of the falling brush after $3.08 s$? (Neglect drag forces.) The acceleration due to gravity is $9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Answer in units of $\frac{\mathrm{m}}{\mathrm{s}}$.

Solution:

We can find the speed of the falling brush after $3.08 s$ from the kinematic equation:

$$
v=v_{0}+a t
$$

here, v_{0} is the initial speed of the falling brush, t is the time, $a=g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ is the acceleration due to gravity (we take the downwards to be the positive direction, thus the acceleration due to gravity will be positive).

Since initially the brush was at rest, $v_{0}=0 \frac{\mathrm{~m}}{\mathrm{~s}}$, and we get:

$$
v(3.08 s)=g t=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 3.08 \mathrm{~s}=30.18 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

$v(3.08 \mathrm{~s})=30.18 \frac{\mathrm{~m}}{\mathrm{~s}}$.

