Answer on Question 62444, Physics, Mechanics | Relativity

Question:

An object 2.0 kg mass collides with another object 4.0 kg mass that moves at $11 \mathrm{~ms}^{-1}$ to the west, after the collision the first object moves at $4 \mathrm{~ms}^{-1}$ west and the second object moves at $12 \mathrm{~ms}^{-1}$ to the west. What was the velocity of the first object before the collision?

Solution:

Let's assume that the first object with mass of 2.0 kg moves to the east and collides with the second object with mass of 4.0 kg that moves at $11 \mathrm{~ms}^{-1}$ to the west. After the collision, the first object moves at $4 \mathrm{~ms}^{-1}$ to the west and the second object moves at $12 \mathrm{~ms}^{-1}$ to the west Also, for convenience, we assume that the second object moves in the positive direction to the west. Then, we can apply the law of conservation of momentum:

$$
-m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

here, m_{1}, m_{2} are the masses of the objects, $v_{1 i}, v_{2 i}$ are its velocities before collision and $v_{1 f}, v_{2 f}$ are its velocities after collision.

From this equation we can find the velocity of the first object before the collision:

$$
v_{1 i}=-\frac{m_{1} v_{1 f}+m_{2} v_{2 f}-m_{2} v_{2 i}}{m_{1}}
$$

Let's substitute the numbers:

$$
v_{1 i}=-\frac{2.0 \mathrm{~kg} \cdot 4 \mathrm{~ms}^{-1}+4.0 \mathrm{~kg} \cdot 12 \mathrm{~ms}^{-1}-4.0 \mathrm{~kg} \cdot 11 \mathrm{~ms}^{-1}}{2.0 \mathrm{~kg}}=-6 \mathrm{~ms}^{-1} .
$$

The sign minus indicates that the velocity of the first object before the collision is directed to the east.

Answer:

$$
v_{1 i}=6 \mathrm{~ms}^{-1} .
$$

