

Answer on Question 62347, Physics, Other

Question:

A 0.2 kg hammer, moving horizontally at 8.5 ms^{-1} driving nail 1.0 cm . What is duration of impact and what is the average force exerted on nail?

Solution:

a) Let's first find the deceleration of the hammer from the kinematic equation:

$$v_f^2 = v_i^2 + 2as,$$

here, $v_i = 8.5 \text{ ms}^{-1}$ is the initial velocity of the hammer, $v_f = 0 \text{ ms}^{-1}$ is the final velocity of the hammer (when it strikes the nail and comes to rest), a is the deceleration of the hammer and $s = 0.01 \text{ m}$ is the distance that nail passes through the board.

Then, from this formula we can find the deceleration of the hammer:

$$a = -\frac{v_i^2}{2s}.$$

We can find the duration of the impact from another kinematic equation:

$$v_f = v_i + at.$$

Substituting the formula for the deceleration of the hammer into the previous equation we get:

$$0 = v_i - \frac{v_i^2}{2s} t.$$

Finally, from this equation we can find t :

$$t = \frac{2s}{v_i} = \frac{2 \cdot 0.01 \text{ m}}{8.5 \text{ ms}^{-1}} = 2.35 \cdot 10^{-3} \text{ s}.$$

b) From the definition of the impulse we have:

$$\bar{F} \Delta t = m \Delta v = m(v_f - v_i).$$

From this formula we can find the average force exerted on nail:

$$\bar{F} = \frac{m(v_f - v_i)}{\Delta t} = \frac{0.2 \text{ kg} \cdot (0 \text{ ms}^{-1} - 8.5 \text{ ms}^{-1})}{2.35 \cdot 10^{-3} \text{ s}} = -723.4 \text{ N.}$$

The sign minus indicates that the average force exerted on the nail is directed downward.

Answer:

a) $t = 2.35 \cdot 10^{-3} \text{ s.}$

b) $\bar{F} = 723.4 \text{ N.}$

<https://www.AssignmentExpert.com>