## Answer on Question \#62334-Physics - Astronomy, Astrophysics

Two 10 kg spheres are placed 500 mm apart. Express the gravitational attraction acting on one of the spheres as percentage of its weight on Earth.

## Solution:

According to the law of universal gravitation, attraction force, acting on the sphere, is equal to

$$
F_{12}=G \frac{m_{1} m_{2}}{r^{2}},
$$

where $G=6.674 \times 10^{-11} \mathrm{~N}(\mathrm{~m} / \mathrm{kg})^{2}$ is the gravitational constant, $m_{1}=m_{2}=10 \mathrm{~kg}$ are masses of the spheres, $r=500 \mathrm{~mm}=0.5 \mathrm{~m}$ are the distance between them. On Earth weight of the sphere is

$$
F_{1}=m_{1} g
$$

where $g=9.81 \mathrm{~N} / \mathrm{kg}$ is gravitational acceleration on Earth. Then

$$
\frac{F_{12}}{F_{1}}=\frac{G m_{1} m_{2}}{r^{2} m_{1} g}=\frac{G m_{2}}{r^{2} g}=\frac{6.674 \times 10^{-11} \times 10}{0.25 \times 9.81}=2.731 \times 10^{-10}=2.731 \times 10^{-8} \% .
$$

Answer: attraction acting on the sphere is $2.731 \times \mathbf{1 0}^{\mathbf{- 8}} \%$ of its weight on Earth.

