

Answer on Question 62184, Physics, Electromagnetism

Question:

A horizontal, straight wire carrying 12.0 A current from west to east is in the Earth's magnetic field B . At this place, B is parallel to the surface of the Earth, points to the north and its magnitude is 0.04 mT . Determine the magnetic force on 1.0 m length of the wire. If mass of this length of wire is 50 g , calculate the value of current in the wire so that its weight is balanced by the magnetic force.

Solution:

a) We can calculate the force exerted on the wire from the equation $\mathbf{F}_B = I\mathbf{L} \times \mathbf{B}$, where \mathbf{F}_B is the magnetic force, I is the current in the wire, \mathbf{L} is a vector that points in the direction of the current I and has a magnitude equal to the length L of the wire, \mathbf{B} is the magnetic field. Therefore, the magnitude of this force is:

$$F = ILB = 12.0\text{ A} \cdot 1.0\text{ m} \cdot 0.04 \cdot 10^{-3}\text{T} = 4.8 \cdot 10^{-4}\text{N}.$$

b) Because the weight of the wire is balanced by the magnetic force, we get:

$$F = W = mg,$$

$$ILB = mg.$$

From the last equation we can calculate the value of the current in the wire so that its weight is balanced by the magnetic force:

$$I = \frac{mg}{LB} = \frac{0.05\text{ kg} \cdot 9.8 \frac{\text{m}}{\text{s}^2}}{1.0\text{ m} \cdot 0.04 \cdot 10^{-3}\text{T}} = 12250\text{ A}.$$

Answer:

a) $F = 4.8 \cdot 10^{-4}\text{N}.$

b) $I = 12250\text{ A}.$