Answer on Question \#62180 - Physics - Electromagnetism

Two circular coils made of similar wire of radius $0.20 \mathrm{~m} \& 0.40 \mathrm{~m}$ are connected in parallel to a battery. Calculate the ratio of magnetic field at the centre.

Solution:

Magnetic field generated by a circular coil of wire:

$$
B=\frac{\mu_{0} I}{2 r},
$$

where μ_{0} is the magnetic constant, I is the electric current through a coil, r is the radius of a coil. Since the coils are connected in parallel, they have the same voltage

$$
U_{1}=U_{2}=U
$$

Resistance of a circular wire:

$$
R=\rho \frac{l}{S}=\rho \frac{2 \pi r}{S}
$$

where ρ is the electric resistivity of the material of a wire, S is the cross-sectional area of a wire.
Then for the first coil,

$$
\begin{gathered}
I_{1}=\frac{U_{1}}{R_{1}}=\frac{U S}{2 \pi r_{1} \rho} \\
B_{1}=\frac{\mu_{0} I_{1}}{2 r_{1}}=\frac{\mu_{0} U S}{4 \pi \rho r_{1}^{2}},
\end{gathered}
$$

where $r_{1}=0.20 \mathrm{~m}$.
For the second coil,

$$
\begin{gathered}
I_{2}=\frac{U_{2}}{R_{2}}=\frac{U S}{2 \pi r_{2} \rho} \\
B_{2}=\frac{\mu_{0} I_{2}}{2 r_{2}}=\frac{\mu_{0} U S}{4 \pi \rho r_{2}^{2}},
\end{gathered}
$$

where $r_{2}=0.40 \mathrm{~m}$.
Thus, the ratio of magnetic field at the centre:

$$
\frac{B_{1}}{B_{2}}=\frac{\mu_{0} U S}{4 \pi \rho r_{1}^{2}} \frac{4 \pi \rho r_{2}^{2}}{\mu_{0} U S}=\left(\frac{r_{2}}{r_{1}}\right)^{2}=\left(\frac{0.4}{0.2}\right)^{2}=4
$$

Answer: 4.

