Answer on Question\#62124 - Physics - Electric Circuits

Two positive charges each $4.18 \mu \mathrm{C}$, and negative charge $-6.36 \mu \mathrm{C}$, are fixed at vertices of an equilateral triangle of side 13 cm . Find the electric force on the negative charge.
Solution. According to Coulomb's law the magnitude of force of interaction of point charges is equal to $F=\frac{k \cdot q_{1} \cdot q_{2}}{r^{2}}$, where $k=9 \cdot 10^{9} \frac{N \cdot m^{2}}{C^{2}}, r$ distance between charges, q_{1}, q_{2}-magnitude of charges. Like charges repel, unlike charges attract. The charges are located as shown in figure.

According to the conditions of the problem $q_{1}=q_{2}=4.18 \cdot 10^{-6} \mathrm{C}, q_{3}=-6.36 \cdot 10^{-6} \mathrm{C}$,
$r_{12}=r_{13}=r_{13}=0.13 \mathrm{~m}$. Positive charges attract negative with a force magnitude equal to the
$F_{13}=F_{23}=\frac{k \cdot\left|q_{1}\right| \cdot\left|q_{3}\right|}{r_{13}^{2}}=\frac{9 \cdot 10^{9} \cdot 4.18 \cdot 10^{-6} \cdot 6.36 \cdot 10^{-6}}{0.13^{2}} \approx 14.16 \mathrm{~N}$
The force of attraction of positive charges to the negative directed as shown in the picture

Electric force on the negative charge equal to the geometric sum of the forces F_{13} and F_{23}. Resultant force acting on a negative charge equal to
$\vec{F}_{r}=\vec{F}_{13}+\vec{F}_{23}$
Charges fixed at vertices of an equilateral triangle.
Using the theorem of cosines will get
$F_{r}^{2}=F_{13}^{2}+F_{23}^{2}-2 F_{13} \cdot F_{23} \cdot \cos 120$.
$F_{r}^{2}=2 F_{13}^{2}-2 F_{13} \cdot F_{13} \cdot\left(-\frac{1}{2}\right)$

$F_{r}^{2}=3 F_{13}^{2} \rightarrow F_{r}=\sqrt{3} F_{13}=\sqrt{3} \cdot 14.16 \approx 24.5 \mathrm{~N}$
Answer. $F_{r}=24.5 \mathrm{~N}$.

