Answer on Question \#62123

what is the total electric force on $-2 n C$ charge? $q 4=-4 n C, q 2=-2 n C, q 7=7 n C$, the distance between q 2 and q 4 is 0.12 mm and the distance between q 4 and q 7 is 0.05 mm .

Solution

Two situations are possible they are shown on the next figure:

A

B

The resulting force on the charge $q 2$ depends on the distance between $q 2$ and $q 2$, so we need consider two situations:
A) Distance between q 2 and q 7 is $r=0.12+0.05=0.17 \mathrm{~mm}$

The force is:

$$
\begin{gathered}
F=\frac{k q_{2} q_{4}}{r_{24}^{2}}+\frac{k q_{2} q_{7}}{r_{27}^{2}}=9 * 10^{9}\left(\frac{-2 *(-4) * 10^{-18}}{120^{2} * 10^{-18}}+\frac{-2 * 7 * 10^{-18}}{170^{2} * 10^{-18}}\right) \\
=9 * 10^{5}(5.56-4.84)=6.44 * 10^{5} \text { Newton }
\end{gathered}
$$

B) Distance between q 2 and q 7 is $r=0.12-0.05=0.07 \mathrm{~mm}$

The force is:

$$
\begin{gathered}
F=\frac{k q_{2} q_{4}}{r_{24}^{2}}+\frac{k q_{2} q_{7}}{r_{27}^{2}}=9 * 10^{9}\left(\frac{-2 *(-4) * 10^{-18}}{120^{2} * 10^{-18}}+\frac{-2 * 7 * 10^{-18}}{70^{2} * 10^{-18}}\right) \\
=9 * 10^{5}(5.56-28.57)=-2.07 * 10^{7} \text { Newton }
\end{gathered}
$$

Answer

(see fig.)
A) $F=6.44 * 10^{5}$ Newton
B) $F=-2.07 * 10^{7}$ Newton

