Answer on Question\#62075 - Physics - Mechanics - Relaativity

A softball is fouled off with a vertical velocity of $30 \mathrm{~m} / \mathrm{s}$ and a horizontal velocity of $15 \mathrm{~m} / \mathrm{s}$. Assumed starting and stopping at height of 0 m . How fast is the ball traveling horizontally 1.5 sec after if is fouled off? How high does the softball travel? How far horizontally does it go?
Solution. Consider the motion a softball. Neglecting air friction in the horizontal direction on softball do not apply force, so the softball will move with constant speed $v_{x}=15 \frac{\mathrm{~m}}{\mathrm{~s}}$. Therefore 1.5 sec after if is fouled off softball has horizontal speed $v_{x}=15 \frac{\mathrm{~m}}{\mathrm{~s}}$. In vertical direction the force of gravity so the softball has a downward acceleration $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Hence the speed and height of the body with time are described by the formulas:
$v_{y}=30-9.8 t$
$h=30 t-\frac{g \cdot t^{2}}{2}$.
As a result, the trajectory of the softball will be a parabola

In the vertical direction softball rises till its vertical speed will equal zero. Hence high does the softball travel equal to:
$0=30-9.8 t \rightarrow t=\frac{30}{9.8} \approx 3.06 \mathrm{sec}$.
$h=30 \cdot 3.06-\frac{9.8 \cdot 3.06^{2}}{2} \approx 45.9 \mathrm{~m}$.
Softball rises and falls at the same time.
$0=v_{x}-g t_{1} \rightarrow h=v_{x} t_{1}-\frac{g \cdot t_{1}^{2}}{2}=g t_{1}^{2}-\frac{g \cdot t_{1}^{2}}{2}=\frac{g \cdot t_{1}^{2}}{2}\left(t_{1}-\right.$ rise time $)$
$h=\frac{g \cdot t_{2}^{2}}{2}$ (t_{2} the fall with zero initial velocity). Hence
$\frac{g \cdot t_{1}^{2}}{2}=\frac{g \cdot t_{1}^{2}}{2} \rightarrow t_{1}=t_{2}$.
Therefore the length of the horizontal path is equal to
$L=v_{y}\left(t_{1}+t_{2}\right)=15 \cdot \frac{60}{9.8} \approx 91.8 \mathrm{~m}$
Answer. 1) $\left.\left.v_{x}=15 \frac{\mathrm{~m}}{\mathrm{~s}} 2\right) 45.9 \mathrm{~m} 3\right) 91.8 \mathrm{~m}$.

