Answer on Question 62027, Physics, Mechanics, Relativity

Question:

The small piston of hydraulic lift has an area of $0.20 \mathrm{~m}^{2}$. A car weighing $1.2 \cdot 10^{4} \mathrm{~N}$ sits on a rack mounted on the large piston. The large piston has an area of $0.90 \mathrm{~m}^{2}$. How large a force must be applied to the small piston to support the car?

Solution:

By the hydraulic press formula we have:

$$
\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}},
$$

here, A_{1} is the area of the small piston, A_{2} is the area of the large piston, F_{1} is the force applied to the small piston, F_{2} is the force applied to the large piston.

From this formula we can find the force applied to the small piston:

$$
F_{1}=F_{2} \frac{A_{1}}{A_{2}}=1.2 \cdot 10^{4} \mathrm{~N} \cdot \frac{0.20 \mathrm{~m}^{2}}{0.90 \mathrm{~m}^{2}}=2.7 \cdot 10^{3} \mathrm{~N} .
$$

Answer:

$F_{1}=2.7 \cdot 10^{3} \mathrm{~N}$.

