Answer on Question \#61897, Physics / Optics

Show that the superposition of two linearly polarized light waves having different amplitude and a finite phase difference can be used to produce elliptically plane polarized light waves.

Answer:

Let a and b be the amplitudes of first linearly polarized light wave and b of second linearly polarized light wave, respectively.

If δ be the phase difference between the two emergent beams, then their vibrations can be expressed as

For first wave: $x=a \sin (\omega t+\delta)$
For second wave: $y=b \sin \omega t$
From second equation we have:

$$
\begin{array}{r}
\frac{y}{b}=\sin \omega t \\
\text { Hence } \quad \cos \omega t=\sqrt{1-\sin ^{2} \omega t}=\sqrt{1-\frac{y^{2}}{b^{2}}}
\end{array}
$$

From first eqation we have:

$$
x=a \sin (\omega t+\delta)=a(\sin \omega t \cos \delta+\cos \omega t \sin \delta)
$$

or,

$$
\frac{x}{a}=\sin \omega t \cos \delta+\cos \omega t \sin \delta=\frac{y}{b} \cos \delta+\sqrt{1-\frac{y^{2}}{b^{2}}} \sin \delta
$$

or,

$$
\frac{x}{a}-\frac{y}{b} \cos \delta=\sqrt{1-\frac{y^{2}}{b^{2}}} \sin \delta
$$

Squaring and rearranging, we get:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos \delta=\sin ^{2} \delta
$$

This is the general equation of an ellipse.

When $\delta=\pi / 2$, then $\sin \delta=1$ and $\cos \delta=0$, therefore

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{2 x y}{a b} \cos \frac{\pi}{2}=\sin ^{2} \frac{\pi}{2}
$$

or,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

This is the equation of an ellipse. In this case, the emergent light is elliptically polarized.

