Answer on Question \#61883-Physics-Mechanics-Relativity

A droplet of perspiration falls off a worker who is standing on a platform 40 m above the ground. Assume throughout that the drop is spherical (volume of a sphere is equal to $\frac{4}{3} \pi r^{3}$ while its surface area is equal to $4 \pi r^{2}$). Your objective is to investigate what happens to the drop as it falls down.
(a) Suppose that as the drop falls, the droplet evaporates at a constant rate. If V is the volume of the drop, this means that $\frac{d V}{d t}=-c$, where c is a positive constant. Find an expression for $\frac{d r}{d h}$, that is, the rate of change of the droplet's radius with respect to the height h above the ground. (3 marks)
(b) A more realistic model is to suppose instead that the rate of evaporation is proportional to the surface area of the drop. Find $\frac{d r}{d h}$ now. (3 marks)
(c) Is it possible, in either of these models, that the drop disappears via evaporation just before hitting the ground?

Solution

(a) The equation of vertical motion in this situation is

$$
\begin{gathered}
h=h_{0}-\frac{g t^{2}}{2} . \\
\frac{d h}{d t}=-g t \rightarrow \frac{d t}{d h}=-\frac{1}{g t} . \\
\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t} \rightarrow-c=4 \pi r^{2} \frac{d r}{d t} \\
\frac{d r}{d t}=-\frac{c}{4 \pi r^{2}} . \\
\int d V=\int-c d t \\
V=V_{0}-c t \\
\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi R^{3}-c t \\
r=\sqrt[3]{R^{3}-\frac{3 c t}{4 \pi}} . \\
\frac{d r}{d t}=-\frac{c^{2}}{4 \pi\left(R^{3}-\frac{3 c t}{4 \pi}\right)^{\frac{2}{3}}} . \\
\frac{d r}{d h}=\frac{d r}{d t} \frac{d t}{d h}=-\frac{1}{4 \pi\left(R^{3}-\frac{3 c t}{4 \pi}\right)^{\frac{2}{3}}\left(-\frac{1}{g t}\right)=\frac{c}{4 \pi g t\left(R^{3}-\frac{3 c t}{4 \pi}\right)^{\frac{2}{3}}} .}
\end{gathered}
$$

Using $t=\sqrt{\frac{2\left(h_{0}-h\right)}{g}}$

$$
\frac{d r}{d h}=\frac{c}{4 \pi g \sqrt{\frac{2\left(h_{0}-h\right)}{g}}\left(R^{3}-\frac{3 c}{4 \pi} \sqrt{\frac{2\left(h_{0}-h\right)}{g}}\right)^{\frac{2}{3}}} .
$$

(b)

$$
\begin{gathered}
\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t} \rightarrow-k 4 \pi r^{2}=4 \pi r^{2} \frac{d r}{d t} \\
\frac{d r}{d t}=-k . \\
\frac{d r}{d h}=\frac{d r}{d t} \frac{d t}{d h}=-k\left(-\frac{1}{g t}\right)=\frac{k}{g t} .
\end{gathered}
$$

Using $t=\sqrt{\frac{2\left(h_{0}-h\right)}{g}}$

$$
\frac{d r}{d h}=\frac{k}{g \sqrt{\frac{2\left(h_{0}-h\right)}{g}}}=\frac{k}{\sqrt{2 g\left(h_{0}-h\right)}}
$$

(c) Yes, if the initial radius of a droplet is small enough.

1. $r=\sqrt[3]{R^{3}-\frac{3 c t}{4 \pi}}=0$, when $t=\sqrt{\frac{2 h_{0}}{g}}$:

$$
\begin{aligned}
& R^{3}=\frac{3 c}{4 \pi} \sqrt{\frac{2 h_{0}}{g}} \\
& R=\sqrt[3]{\frac{3 c}{4 \pi} \sqrt{\frac{2 h_{0}}{g}}}
\end{aligned}
$$

2. $r=R-k t=0$, when $t=\sqrt{\frac{2 h_{0}}{g}}$:

$$
R=k \sqrt{\frac{2 h_{0}}{g}}
$$

