

Answer on Question #61869-Physics-Mechanics

1. The figure attached is water fall which is 50 m high. Water falls in a section of the fall at the rate of $1.2 \times 10^6 \text{ kg s}^{-1}$. How much power is generated by the fall?

Solution

$$P = \frac{dE}{dt}$$

$$E = mgh.$$

$$P = \frac{dm}{dt} gh = (1.2 \cdot 10^6)(9.8)(50) = 5.9 \cdot 10^8 \text{ W}.$$

2 The bulk modulus of water is 2.1 GPa. Calculate the volume contraction of 100 mL when subjected to a pressure of 1.5 MPa

a. 0.045 mL

b. -0.071 mL

c. 0.033 mL

d. -0.027 mL

Solution

$$\Delta v_o = -Pv_o/B$$

$$B = -Pv_o/\Delta v_o$$

$$B = 2.1 \text{ GPa}$$

$$P = 1.5 \text{ MPa} = 1.5 \cdot 10^6 \text{ Pa}$$

$$v_o = \frac{100 \text{ ml}}{1000}$$

$$\Delta v_o = -\frac{Pv_o}{B} = -\frac{(1.5 \cdot 10^6)(0.1)}{2.1 \cdot 10^9} = (-7.1 \cdot 10^{-5} \text{ mL})(1000) = -0.071 \text{ ml}$$