

Answer on question #61739, Physics, Electromagnetism

Derive an expression for divergence E ($\text{div}E$) for a point inside and outside of a charge distribution?

Solution:

$$\vec{E} = \frac{kQ}{r^3} \vec{r} = \frac{kQ}{r^3} (x\vec{i} + y\vec{j} + z\vec{k})$$

Where \vec{r} the radius vector of the point charge location

For a point outside of a charge distribution

$$\text{div} \vec{E} = kQ \left[\frac{\partial}{\partial x} \left(\frac{x}{r^3} \right) + \frac{\partial}{\partial y} \left(\frac{y}{r^3} \right) + \frac{\partial}{\partial z} \left(\frac{z}{r^3} \right) \right]$$

$$\frac{\partial}{\partial x} \left(\frac{x}{r^3} \right) = \frac{r^3 + 3xr^2 \frac{\partial r}{\partial x}}{r^6} = \frac{r^3 - 3rx^2}{r^6} = \frac{r^2 - 3x^2}{r^5}$$

Similarly

$$\frac{\partial}{\partial y} \left(\frac{y}{r^3} \right) = \frac{r^2 - 3y^2}{r^5}$$

$$\frac{\partial}{\partial z} \left(\frac{z}{r^3} \right) = \frac{r^2 - 3z^2}{r^5}$$

Where, $|r| = \sqrt{x^2 + y^2 + z^2}$

Then,

$$\text{div} \vec{E} = kQ \frac{3r^2 - 3(x^2 + y^2 + z^2)}{r^5} = kQ \left(\frac{3}{(\sqrt{x^2 + y^2 + z^2})^3} - \frac{3(x^2 + y^2 + z^2)}{(\sqrt{x^2 + y^2 + z^2})^5} \right) = 0$$

Thus, if $r \neq 0$, then $\text{div} \vec{E} = 0$. At the point $r = 0$ divergence undefined ($\text{div} \vec{E} = \infty$). We can calculate the flow field \vec{E} through the surface surrounding the charge is Q . Let there be a spherical closed surface of arbitrary radius, and the center point charge is Q .

For a point inside of a charge distribution

$$\frac{Q}{\epsilon_0} = \frac{1}{\epsilon_0} \int_V \rho dV$$

Where, ρ bulk density of charge, by using Gauss' theorem, we can write

$$\oint_S (\vec{E} \vec{n}) dS = \int_V \text{div} \vec{E} dV$$

left sides of the formulas are

$$\oint_S (\vec{E} \vec{n}) dS = \frac{Q}{\epsilon_0}$$

therefore, equal and right

$$\frac{1}{\epsilon_0} \int_V \rho dV = \int_V \text{div} \vec{E} dV$$

and therefore the integrands

$$\text{div} \vec{E} = \frac{\rho}{\epsilon_0}$$

Answer:

Divergence for a point outside of a charge distribution

$$\operatorname{div} \vec{E} = kQ \left(\frac{3}{(\sqrt{x^2 + y^2 + z^2})^3} - \frac{3(x^2 + y^2 + z^2)}{(\sqrt{x^2 + y^2 + z^2})^5} \right) = 0$$

Divergence for a point inside of a charge distribution

$$\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$$

<https://www.AssignmentExpert.com>