Answer on question \#61739, Physics, Electromagnetism

Derive an expression for divergence E (divE) for a point inside and outside of a charge distribution?

Solution:

$$
\vec{E}=\frac{k Q}{r^{3}} \vec{r}=\frac{k Q}{r^{3}}(x \vec{\imath}+y \vec{\jmath}+z \vec{k})
$$

Where \vec{r} the radius vector of the point charge location

For a point outside of a charge distribution

$$
\begin{gathered}
\operatorname{div} \vec{E}=k Q\left[\frac{\partial}{\partial x}\left(\frac{x}{r^{3}}\right)+\frac{\partial}{\partial y}\left(\frac{y}{r^{3}}\right)+\frac{\partial}{\partial z}\left(\frac{z}{r^{3}}\right)\right] \\
\frac{\partial}{\partial x}\left(\frac{x}{r^{3}}\right)=\frac{r^{3}+3 x r^{2} \frac{\partial r}{\partial x}}{r^{6}}=\frac{r^{3}-3 r x^{2}}{r^{6}}=\frac{r^{2}-3 x^{2}}{r^{5}}
\end{gathered}
$$

Similarly

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(\frac{y}{r^{3}}\right) & =\frac{r^{2}-3 y^{2}}{r^{5}} \\
\frac{\partial}{\partial z}\left(\frac{z}{r^{3}}\right) & =\frac{r^{2}-3 z^{2}}{r^{5}}
\end{aligned}
$$

Where, $|r|=\sqrt{x^{2}+y^{2}+z^{2}}$
Then,

$$
\operatorname{div} \vec{E}=k Q \frac{3 r^{2}-3\left(x^{2}+y^{2}+z^{2}\right)}{r^{5}}=k Q\left(\frac{3}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}-\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{5}}\right)=0
$$

Thus, if $r \neq 0$, then $\operatorname{div} \vec{E}=0$. At the point $r=0$ divergence undefined ($\operatorname{div} \vec{E}=\infty$). We can calculate the flow field \vec{E} through the surface surrounding the charge is Q . Let there be a spherical closed surface of arbitrary radius, and the center point charge is Q.

For a point inside of a charge distribution

$$
\frac{Q}{\varepsilon_{0}}=\frac{1}{\varepsilon_{0}} \int_{V} \rho d V
$$

Where, ρ bulk density of charge, by using Gauss' theorem, we can write

$$
\oint_{S}(\vec{E} \vec{n}) d S=\int_{V} \operatorname{div} \vec{E} d V
$$

left sides of the formulas are

$$
\oint_{S}(\vec{E} \vec{n}) d S=\frac{Q}{\varepsilon_{0}}
$$

therefore, equal and right

$$
\frac{1}{\varepsilon_{0}} \int_{V} \rho d V=\int_{V} d i v \vec{E} d V
$$

and therefore the integrands

$$
\operatorname{div} \vec{E}=\frac{\rho}{\varepsilon_{0}}
$$

Answer:

Divergence for a point outside of a charge distribution
$\operatorname{div} \vec{E}=k Q\left(\frac{3}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}-\frac{3\left(x^{2}+y^{2}+z^{2}\right)}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{5}}\right)=0$
Divergence for a point inside of a charge distribution
$\operatorname{div} \vec{E}=\frac{\rho}{\varepsilon_{0}}$

