Answer on Question \#61727-Physics-Mechanics | Relativity

A particle has:an average acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$ if it goes from $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 2 seconds.an average acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ if it goes from $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 2 seconds.an average acceleration of $12 \mathrm{~m} / \mathrm{s}^{2}$ if it goes from $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 2 seconds.an average acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ if it goes from $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 2 seconds.an average acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ if it goes from $2 \mathrm{~m} / \mathrm{s}$ to $6 \mathrm{~m} / \mathrm{s}$ in 2 seconds.

Solution

The average acceleration is

$$
a=\frac{v_{f}-v_{i}}{t}=\frac{6-2}{2}=2 \frac{m}{s^{2}}
$$

So, the last choice is true.

