Question \#61704, Physics / Mechanics

a dolphin accelerates at $-1.77 \mathrm{~m} / \mathrm{s}$ squared for 3.33 seconds, and ends with a velocity of $-8.77 \mathrm{~m} / \mathrm{s}$. what is the displacement of the dolphin in that time?

Solution

Dolphin moves uniformly accelerated with negative acceleration, we write the law of motion of a dolphin:
$\left\{\begin{array}{c}v=v_{0}+a t \\ S=v_{0} t+\frac{a t^{2}}{2} ;\end{array}\right.$
$\left\{\begin{array}{c}v_{0}=v-a t \\ S=v_{0} t+\frac{a t^{2}}{2} ;\end{array}\right.$
That is the displacement of the dolphin:
$S=(v-a t) t+\frac{a t^{2}}{2}=v t-\frac{a t^{2}}{2}=\frac{8.77 m}{s} \cdot 3.33 s+\frac{\frac{1.77 m}{s^{2}} \cdot 3.33^{2}}{2} \approx 38.63 \mathrm{~m}$

Answer the question: 38.63 m.

