

Answer on Question #61702-Physics-Mechanics

What is the effective weight of a person of mass 60 kg carried vertically up in a rocket with an acceleration of $2g$? Draw a properly labeled free-body diagram.

Solution

Write Newton's second law in the vector form

$$\vec{F} = \vec{N} + \vec{W}$$

The equation will look like in the projection on the axis of $+Y$

$$ma = N - mg$$

$$N = ma + mg$$

Where, $a = 2g$

$$N = 2mg + mg$$

Finally,

$$N = 3mg = 3 \cdot 60 \text{ kg} \cdot 9.8 \frac{m}{s^2} = 1764 \text{ N}$$

Answer: 1764 N.

b) An aeroplane flies due east along the equator with a speed of 300 ms^{-1} . Determine the magnitude and direction of the Coriolis acceleration.

Solution

The Coriolis acceleration is

$$\vec{a}_c = 2 \Omega \times \vec{v}$$

Where

$$\Omega = \frac{2\pi}{24 \cdot 60 \cdot 60}.$$

The magnitude is

$$a_c = 2 \frac{2\pi}{24 \cdot 60 \cdot 60} 300 \sin 90 = 0.044 \frac{m}{s^2}.$$

The direction is towards the center of Earth.