Answer on Question \#61695, Physics / Mechanics | Relativity

A cylindrical centrifuge of mass 8 kg and radius 10 cm spins at a speed of $80,000 \mathrm{rpm}$.
Calculate the minimum braking torque that must be applied to stop the rotor within 30 s from the instant the motor is turned off.

Solution:

We apply a constant braking force [F] perpendicularly to the radius of spin. Then the torque (moment of force) will be

$$
\tau=F \cdot r
$$

From the other hand, this torque will cause an angular acceleration (deceleration in this case) α, and the relation between them is

$$
\tau=I \cdot \alpha
$$

where l is the moment of inertia of a centrifuge.
For an object whose mass is at the constant distance from the axis of rotation, the moment of inertia is

$$
I=m r^{2}
$$

Therefore, we obtain

$$
\tau=m r^{2} \alpha
$$

The angular speed ω will decrease uniformly at a rate α

$$
\omega=\omega_{0}-\alpha t
$$

A centrifuge stops when $\omega=0$, so

$$
\alpha=\frac{\omega_{0}}{t_{1}}
$$

wherev $_{0}$ is the initial angular speed and t_{1} is the given time of braking.
Rotations per minute (abbreviated rpm) are a measure of the frequency of a rotation. It annotates the number of turns completed in one minute around a fixed axis.

We have

$$
f=80000 \mathrm{rpm}=\frac{80000 \text { rotation }}{60 \mathrm{~s}}=1333.3 \mathrm{~Hz}
$$

The conversion between a frequency f measured in hertz and an angular speed ω measured in radians per second are:

$$
\omega_{0}=2 \pi f=6.28 \cdot 1333.3=8373.3 \frac{r a d}{s}
$$

Thus,

$$
\alpha=\frac{\omega_{0}}{t_{1}}=\frac{8373.3}{30}=279.1 \mathrm{rad} / \mathrm{s}^{2}
$$

Finally,

$$
\tau=8 \cdot 0.1^{2} \cdot 279.1=22.33 \mathrm{~N} \cdot \mathrm{~m}
$$

Answer: $22.3 \mathrm{~N} \cdot \mathrm{~m}$

