Answer on Question 61694, Physics, Mechanics | Relativity

Question:

A ball of mass $m=8.0 \cdot 10^{-2} \mathrm{~kg}$ starts from rest and falls vertically downward from a height of 3.0 m . After colliding with the ground, it bounces up to a height of 2.0 m . The collision takes place over a time interval of $\Delta t=5.0 \cdot 10^{-3} \mathrm{~s}$. Calculate:

1) the momentum of the ball immediately before and immediately after the collision

2) average force exerted by the ground on the ball
3) impulse imparted to the ball

Solution:

1) Let's first find the velocity of the ball just before it collides with the ground from the Law of Conservation of Energy:

$$
\begin{gathered}
P E=K E, \\
m g h_{1}=\frac{1}{2} m v_{1}^{2}, \\
v_{1}=\sqrt{2 g h_{1}}=\sqrt{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 3.0 \mathrm{~m}}=7.67 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Then, the momentum of the ball immediately before the collision will be:

$$
p_{1}=m v_{1}=8.0 \cdot 10^{-2} \mathrm{~kg} \cdot 7.67 \frac{\mathrm{~m}}{\mathrm{~s}}=0.61 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Again using the Law of Conservation of Energy, we can find the velocity of the ball after it bounces from the ground:

$$
\begin{gathered}
P E=K E, \\
m g h_{2}=\frac{1}{2} m v_{2}^{2}, \\
v_{2}=\sqrt{2 g h_{2}}=\sqrt{2 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2.0 \mathrm{~m}}=6.26 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Therefore, the momentum of the ball immediately after the collision will be:

$$
p_{2}=m v_{2}=8.0 \cdot 10^{-2} \mathrm{~kg} \cdot 6.26 \frac{\mathrm{~m}}{\mathrm{~s}}=0.5 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

2) From the definition of the impulse we have:

$$
\bar{F} \Delta t=m \Delta v=J=p_{1}-p_{2} .
$$

Then, the average force exerted by the ground on the ball will be:

$$
\bar{F}=\frac{p_{1}-p_{2}}{\Delta t}=\frac{0.61 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}-0.5 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}}{5.0 \cdot 10^{-3} \mathrm{~s}}=22 \mathrm{~N} .
$$

3) The impulse imparted to the ball will be:

$$
J=p_{1}-p_{2}=0.61 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}-0.5 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}=0.11 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

1) $p_{1}=0.61 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}, p_{2}=0.5 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}$
2) $\bar{F}=22 N$.
3) $J=0.11 \mathrm{~kg} \frac{\mathrm{~m}}{\mathrm{~s}}$.
