Answer on Question \#61685-Physics-Other

A train moving with speed $72 \mathrm{~km} \mathrm{~h}-1$ emits a whistle of frequency 600 Hz . A person is standing stationary on the platform. Calculate the frequency heard by the person if the train (i) approaches and (ii) recedes away from the listener.

Solution

The speed of train relative to platform:

$$
V_{t}=72000 \frac{\mathrm{~m}}{\mathrm{~h}} \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=20 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

V_{S} is the speed of the sound.
$V_{p}=0$ is the speed of platform relative itself.
i. The frequency heard by the person if the train approaches to the listener is

$$
f_{1}=\frac{V_{s}+V_{p}}{V_{s}-V_{t}} f_{t}=\frac{343+0}{343-20} 600=637.2 \mathrm{~Hz}
$$

ii. The frequency heard by the person if the train recedes away from the listener is

$$
f_{2}=\frac{V_{s}-V_{p}}{V_{s}+V_{t}} f_{t}=\frac{343-0}{343+20} 600=566.9 \mathrm{~Hz}
$$

