Answer on question \#61642, Physics, Solid State Physics

John drove south 120 km at $60 \mathrm{~km} / \mathrm{h}$ and then east 150 km at $50 \mathrm{~km} / \mathrm{h}$. Determine:
a) The average speed for the whole journey.
b) The magnitude of the average velocity for the whole journey.

Solution:

a)

The time t_{1} to cover 120 km at a speed of $60 \mathrm{~km} / \mathrm{h}$ is given by

$$
t_{1}=\frac{120 \mathrm{~km}}{60 \mathrm{~km} / \mathrm{h}}=2 \mathrm{hours}
$$

The time t_{2} to cover 150 km at a speed of $50 \mathrm{~km} / \mathrm{h}$ is given by

$$
\begin{gathered}
t_{2}=\frac{150 \mathrm{~km}}{50 \mathrm{~km} / \mathrm{h}}=3 \text { hours } \\
\text { average speed }=\frac{\text { distanse }}{\text { time }} \\
\text { average speed }=\frac{120 \mathrm{~km}+150 \mathrm{~km}}{2 \mathrm{~h}+3 \mathrm{~h}}=54 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

b)

The magnitude of the displacement is the distance AC between the final point and the starting point and is calculated using Pythagora's theorem as follows

$$
A C^{2}=A B^{2}+B C^{2}
$$

$$
A C=\sqrt{120^{2}+150^{2}}=\sqrt{14400+22500}=30 \sqrt{41} \mathrm{~km}
$$

$$
\begin{gathered}
\text { average velocity }=\frac{\text { displacement }}{\text { time }} \\
\text { average velocity }=\frac{30 \sqrt{41} \mathrm{~km}}{2 \mathrm{~h}+3 \mathrm{~h}} \approx 38.4 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

Answer: a) $54 \mathrm{~km} / \mathrm{h}$ b) $38.4 \mathrm{~km} / \mathrm{h}$
http://www.AssignmentExpert.com

