Answer on Question \#61625-Physics-Other

An electron's position is given by vector $r=2.91 t$ (i hat) -4.01 t 2 (j hat) +2.04 (k hat), with t in seconds and vector r in meters.

At $t=1.97 \mathrm{~s}$, what is the magnitude of vector v ?

Solution

$$
\begin{gathered}
\boldsymbol{r}=2.91 t \hat{\imath}-4.01 t^{2} \hat{\jmath}+2.04 \hat{k} \\
\boldsymbol{v}=\frac{d \boldsymbol{r}}{d t}=2.91 \hat{\imath}-4.01(2 t) \hat{\jmath}+0 \hat{k}=2.91 \hat{\imath}-8.02(t) \hat{\jmath} \\
\boldsymbol{v}(1.97)=2.91 \hat{\imath}-8.02(1.97) \hat{\jmath}=2.91 \hat{\imath}-15.80 \hat{\jmath}
\end{gathered}
$$

The magnitude of vector v is

$$
v=\sqrt{(2.91)^{2}+(-15.80)^{2}}=16.07 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: 16. $07 \frac{\mathrm{~m}}{\mathrm{~s}}$.

