Answer on Question 61580, Physics, Other

Question:

A large man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is 95.0 kg . If the chair legs are circular and have a radius of 0.5 cm at the bottom, what pressure does each leg exert on the floor?

Solution:

By the definition of the pressure we have:

$$
P=\frac{F}{A^{\prime}}
$$

here, P is the pressure that each leg exert on the floor, F is the force acting on the floor, A is the total area of the four legs.

The force acting on the floor is the weight of the man and chair:

$$
F=W=m g,
$$

here, m is the combined mass of the man and chair, g is the acceleration due to gravity. We can find the total area of the four legs from the formula:

$$
A=N \pi r^{2}
$$

here, N is the number of the chair legs, r is the radius of the chair leg.
Finally, substituting F and A into the formula, we get:

$$
P=\frac{F}{A}=\frac{m g}{N \pi r^{2}}=\frac{95 \mathrm{~kg} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{4 \cdot \pi \cdot(0.005 \mathrm{~m})^{2}}=2.96 \cdot 10^{6} \mathrm{~Pa} .
$$

Answer:

The pressure that each leg exert on the floor is $P=2.96 \cdot 10^{6} \mathrm{~Pa}$.

