Answer on Question 61580, Physics, Other

Question:

A large man sits on a four-legged chair with his feet off the floor. The combined mass of the man and chair is $95.0 \, kg$. If the chair legs are circular and have a radius of $0.5 \, cm$ at the bottom, what pressure does each leg exert on the floor?

Solution:

By the definition of the pressure we have:

$$P=\frac{F}{A},$$

here, P is the pressure that each leg exert on the floor, F is the force acting on the floor, A is the total area of the four legs.

The force acting on the floor is the weight of the man and chair:

$$F = W = mg$$
,

here, m is the combined mass of the man and chair, g is the acceleration due to gravity.

We can find the total area of the four legs from the formula:

$$A = N\pi r^2$$
,

here, N is the number of the chair legs, r is the radius of the chair leg.

Finally, substituting F and A into the formula, we get:

$$P = \frac{F}{A} = \frac{mg}{N\pi r^2} = \frac{95 \ kg \cdot 9.8 \ \frac{m}{s^2}}{4 \cdot \pi \cdot (0.005 \ m)^2} = 2.96 \cdot 10^6 \ Pa.$$

Answer:

The pressure that each leg exert on the floor is $P = 2.96 \cdot 10^6 Pa$.

https://www.AssignmentExpert.com