

Answer on question #61577, Physics - Mechanics | Relativity

Question A satellite revolves in a circular orbit around the earth at a certain height (h) above it. Suppose that $h \ll R$, the radius of the earth. Calculate the time period of revolution of the satellite

Solution Centrifugal force is equal to gravitational one. Hence:

$$m\nu^2(R + h) = G \frac{mM}{(R + h)^2}$$

where m is mass of satellite and ν is its angular velocity. Hence

$$\nu = \sqrt{G \frac{M}{(R + h)^3}}$$

So, the period is

$$T = \frac{2\pi}{\sqrt{G \frac{M}{(R + h)^3}}}$$