Answer on Question\#61574 - Physics - Mechanics - Relativity

An aeroplane flies due east along the equator with a speed of $300 \mathrm{~ms}-1$. Determine the magnitude and direction of the Coriolis acceleration.
Solution. The Coriolis acceleration can be calculated by the formula $a=2[\vec{v}, \vec{\omega}]$ (vector product). Where $v=300 \frac{\mathrm{~m}}{\mathrm{~s}}$ - the relative velocity of the point, ω - the angular velocity of rotation of the Earth. Magnitude Coriolis acceleration find as $a=v \omega \sin \alpha$. v, ω magnitude relative and velocity, α - the angle between them (in our case $\alpha=90^{\circ}$).
The angular velocity of the Earth at the equator can be calculated as
$\omega=\frac{2 \pi}{T}$, where T - the period of rotation of Earth. ($\left.T=24^{h}=86400 s\right)$.
Hence $a=v \frac{2 \pi}{T} \sin 90^{\circ}=300 \cdot \frac{2 \pi}{86400} \cdot 1 \approx 0.022 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
If the body is moving from West to East in the plane of the equator, the Coriolis acceleration directed vertically upwards.
Answer. $a=0.022 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ directed vertically upwards.

