Answer on question \#61569, Physics / Molecular Physics | Thermodynamics
Statement of a problem
How many grams of ice must we add in 500 g of water which has temperature $30^{\circ} \mathrm{C}$ so when the ice melts completely, the final temperature of water would be $5^{\circ} \mathrm{C}$?
$t_{1}=30^{\circ} \mathrm{C}$ - initial temperature of the water;
$m_{w}=0.5 \mathrm{~kg}-$ mass of the water;
$t_{2}=5^{\circ} \mathrm{C}$ - final temperature of water;
$t_{\text {ice }}=0^{\circ} \mathrm{C}$ - temperature of the ice;
$\lambda=3.5 \times 10^{5} \mathrm{~J} / \mathrm{kg}-$ specific heat of fusion of ice
$C=4.2 \times 10^{3} \mathrm{~J} / \mathrm{kg}-$ specific heat capacity of water
Find: $m_{\text {ice }}-$? - mass of the ice
Thermal balance equation
$Q_{f}+Q_{1}=Q_{2}$,
Where $Q_{f}=\lambda m_{i c e}$ - heat of fusion,
$Q_{1}=C m_{i c e}\left(t_{2}-t_{i c e}\right)-$ heat expended on heating the melt water
$Q_{2}=C m_{w}\left(t_{1}-t_{2}\right)$ - heat from hot water
$\lambda m_{\text {ice }}+C m_{\text {ice }}\left(t_{2}-t_{\text {ice }}\right)=C m_{w}\left(t_{1}-t_{2}\right)$
$m_{\text {ice }}\left(\lambda+\mathrm{C}\left(t_{2}-t_{\text {ice }}\right)\right)=C m_{w}\left(t_{1}-t_{2}\right)$
$m_{i c e}=\frac{C m_{w}\left(t_{1}-t_{2}\right)}{\lambda+C\left(t_{2}-t_{i c e}\right)}$
Calculation:
$m_{\text {ice }}=\frac{4.2 \times 10^{3} \times 0.5 \times(30-5)}{3.3 \times 10^{4}+4.2 \times 10^{3} \times(5-0)}=\frac{2.1 \times 25 \times 10^{3}}{3.3 \times 10^{4}+2.1 \times 10^{4}}=\frac{5.25}{35.1} \approx 0.1496(\mathrm{~kg})$
$m_{\text {ice }} \approx 0.1496 \mathrm{~kg}=149.6 \mathrm{~g}$
Answer: $m_{\text {ice }} \approx 0.1496 \mathrm{~kg}=149.6 \mathrm{~g}$

