## Answer on question \#61367, Physics / Electromagnetism

19) The half-life of a certain radioactive isotope is 32 hours. What fraction of the sample would remain after 16 huors?
a) 0.50
b) 0.25
c) 0.62
d) 0.71

## Solution:

The law radioactive decay is

$$
N=N_{0} \cdot 2^{-\frac{t}{T}}
$$

Here $N$ is the quantity at time $t$, and $N_{0}$ is the initial quantity, i.e. the quantity at time $t=0, T$ is the half-life.

From here,

$$
\begin{gathered}
\frac{N}{N_{0}}=2^{-\frac{t}{T}} \\
\frac{N}{N_{0}}=2^{-\frac{16}{32}}=2^{-\frac{1}{2}}=0.71
\end{gathered}
$$

## Answer: d) 0.71

20) A potentiometer wire of length 100 cm has a resistance of $10 \Omega$. It is connected in series to a resistance R and a cell of emf 2 V and negligible internal resistance. A source of emf of 10 mV is balanced by a length of 40 cm of the potentiometer wire. What is the value of the resistance $R$ ?
a) $200 \Omega$
b) $950 \Omega$
c) $2000 \Omega$
d) $790 \Omega$

## Solution:

The current in the circuit

$$
I=\frac{U}{R+r}
$$

Now as the 100 cm wire has a resistance of $10 \Omega$, the resistance of 40 cm of wire will be $40 \times(10 / 100)=4 \Omega$.

Potential drop across 40 cm wire will be

$$
\begin{gathered}
\mathrm{V}=4 \mathrm{I} \\
I=\frac{2}{R+10}
\end{gathered}
$$

given $V=10 \mathrm{mv}$

$$
\begin{gathered}
10 \cdot 10^{-3}=4 \cdot \frac{2}{R+10} \\
R=4 \cdot \frac{2}{10 \cdot 10^{-3}}-10 \\
R=790 \Omega
\end{gathered}
$$

Answer: d) $790 \Omega$

